Zeolite Reviews

Lyn Hanshew M.D.

Toxic World

Consider This– The U.S. alone emits 4 billion pounds of toxins in the air, soil, and water every year. These toxins are inescapable. We breathe toxins in our air, we drink them in our water and eat them in our food. If pesticides are not sprayed directly onto our food, toxins from plastic containers are leached in. Our bodies are bombarded by these toxins. Most of us have between 400 and 800 toxic or carcinogenic chemicals stored in our bodies. Moreover, studies have found these toxins in the umbilical cords of babies, proving that these toxins are passed into our children even before they are born. Constant exposure to toxins usually leads to a host of chronic health problems including cognitive deficits, mood changes, neurological illness, autoimmunity, asthma, allergies, and reproductive dysfunction. The evidence connecting toxic heavy metals causing and accelerating the development of chronic illnesses is overwhelming.

Some toxins cause more direct damage to our body than others. Mercury for example, is a potentially deadly toxin that can even cause damage to DNA. Mercury has been linked to autism, cancer, heart disease, Alzheimer’s and various behavior and neurological disorders. It is number three on the hazardous metals list, published by the ATSDR (Agency for Toxic Substance and Disease Registry). In 2008 the FDA declared the mercury amalgam dental fillings a neurotoxin. Before that more than 50% of dental fillings contained mercury. A 2009 commercial test showed that mercury was also found in 9 of the 20 most popular high fructose corn syrups on the market. Considering how many products contain high fructose corn syrup and the amount of these products that people consume, you can imagine how much mercury the population is exposed to.

How our Body handles Toxins and Heavy Metals

The incidence of disease and the deterioration of our general health have a direct correlation with the pollution on our planet. The term “Toxic Body Burden” is born from this knowledge. Toxic Body Burden (TBB) refers to the storing of toxins and heavy metals in the body because they cannot be processed and end up being stored by the body. The presence of these toxins depresses the efficiency of the immune system and allows bacteria, viruses and parasites, that would otherwise be eliminated, room to grow. It is theorized that this immune deficiency can lead to the body hosting just as many microorganisms as it does toxins. Detoxification is needed to remove our body’s build-up of toxins and heavy metals. Once the burden is removed, the immune system can work to better eliminate the microorganisms.

Toxicity, Obesity And Heavy Metal Toxins

In recent years, the WHO (World Health Organization) has been exposing the direct correlation between obesity, toxins, and cancer. A study done by the Columbia University School of Public Heath showed that 95 percent of cancers are caused by diet and environmental toxicity. When you consider that toxins are stored in the body’s fatty tissue, the picture becomes clearer.

Luke J. Terry from NaturalNews.com explains “the body is using fatty tissue, which has a relatively low level of metabolic activity, as a place to store the toxins away from the body tissues that have high levels of metabolic activity, such as blood, organs, and muscle. In effect, body fat becomes a storehouse of toxins to “firewall” the body from toxicity.” The body will maintain a level of fat and water to dilute the amount of the toxins that can be released into the bloodstream. The higher the level of toxicity, the more fat and water will be retained in the body. Highly toxic people will find it harder to lose weight as the body looks to protect itself against the toxicity from within. Lowering toxin intake and detoxification are important part to major weight loss.

Zeolite – Nature’s Heavy Metal Toxin Remover

Natural zeolites are a class of crystalline, silica-based minerals, much like sand. Zeolites, or aluminosilicates, are formed through a chemical reaction between seawater and molten lava. Zeolites are one of the few naturally occurring minerals with a negative charge. This negative charge is responsible for the zeolite attracting and bonding with toxic heavy metals, chemical elements, and even radioactive isotopes. In addition to the negative charge, the three-dimensional cage structure of the zeolite further helps to hold toxins and heavy metals to the to the zeolite cage, making the attraction irreversible.

These unique qualities are why zeolites are in such high demand. Most common modern uses for zeolite, fall under industrial and commercial applications. It is used in large-and small-scale water filtration, sewage treatment, as industrial absorbents, and detergent builders. Zeolite was even used during the Fukushima nuclear disaster to remove radiation from sea water, after it was used to cool the nuclear reactors. The attraction between zeolite and harmful heavy metals and toxins proved to be advantageous in all of these applications.

One specific type of zeolite, clinoptilolite, has a long and documented history in traditional medicine. When ingested, clinoptilolite will attract and bind to toxic heavy metals and toxins in the body, the same way it does in other applications. It will travel through the body attracting and trapping toxins until it is safely excreted through urine. Clinoptilolite has a stronger attraction to certain elements. For instance, clinoptilolite has the strongest affinity for lead, cadmium, arsenic, then mercury, followed by other positively charged heavy metals and toxins. In addition to removing these heavy metals and toxins, zeolite will also remove chemical toxins like pesticides, herbicides, plastics, and radiation from the body.

The Other Benefits of Zeolite

Zeolite the Antioxidant against Free Radicals
In addition to being a detoxifier, clinoptilolite is also a very unique antioxidant. Most antioxidants will neutralize a free radical by giving up an electron. Clinoptilolite, on the other hand, will capture the free radical in its cage without having to release an electron.

Zeolite the Antiviral

While most of the research on clinoptilolite is on the detoxification properties, there are some studies showing clinoptilolite to have a broad spectrum of antiviral properties. The same qualities that make zeolite an effective remover of toxins and heavy metals have been shown in some studies to work on viruses. Reports show that clinoptilolite disturbs viral replication by absorbing positively charge viral sub particles. This essentially means that viruses will be unable to form, destroy health cells, and further infect other health cells. Stopping replication is always the first step to fighting any virus.

Other Points

• Clinoptilolite helps to maintain a balanced pH level in the body by removing acidic ions and chemicals.
• Larger clinoptilolite particles helps to treat diarrhea
• Zeolite improves nutrient absorption and promotes healthy digestion by pulling ammonium ions out of the digestive tract.

Garry F. Gordon M.D.

Patients ask, “How Can I Be Toxic?” Common Sources of Mercury Revealed

It seems that each year more and more patients come to see me who are suffering from high levels of toxic heavy metals, especially mercury. Mercury can have serious effects, causing extreme damage to the nervous system and organs. It is linked to hindering the neurological development of fetuses, which continues even after birth, disrupting brain functions, slowing heart rates, and lowering oxygen levels. In adults, excess mercury not only causes severe brain damage, but also extensive hearing loss.

There are several ways in which we are exposed to mercury. Everyone knows that fish and other types of seafood contain high levels of this dangerous metal, but few know that mercury is also found in other areas of our food supply. One surprising way in which the public is being exposed to mercury is through high fructose corn syrup (HFCS). Though HFCS has been added to foods and used in food processing for decades, it is only in recent years that the US government and public have come to learn that some HFCS may be contaminated with mercury. Countless foods, such as beverages, breads, cereals, breakfast bars, lunch meats, yogurts, soups, and condiments, contain HFCS. Given the fact that 10% of most people’s diet contains HFCS, ingesting high levels of mercury is a very realistic threat. Taking a daily zeolite supplement to help rid the body of any mercury has become more of a necessity than ever.

An FDA investigation of mercury contamination in HFCS was conducted in the early 2000s. An article describing the discovery of mercury in HFCS, and the subsequent FDA investigation was published in the Journal of Environmental Health in January 2009. This article helped inform the public about the toxic mercury which lurked in everyday foods. Below is a copy of the article

– Dr. Howard Peiper

Mercury from chlor-alkali plants: measured concentrations in food product sugar

Written by:
Renee Dufault, Blaise LeBlanc, Roseanne Schnoll, Charles Cornett, Laura Schweitzer, David Wallinga, Jane Hightower, Lyn Patrick, and Walter J Lukiw

Abstract

Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.

Background

Chlorine and caustic soda are produced at chlor-alkali plants using mercury cells or the increasingly popular membrane technology that is mercury free and more energy-efficient. Worldwide there are approximately fifty mercury cell chlor-alkali plants in operation [1]. Of those there are eight in the United States (US) [2]. In 2003 the EPA reported in the Federal Register that on average approximately seven tons of mercury were missing from each plant in the year 2000 [3]. These chlor-alkali plants have an average of fifty-six cells, each containing as much as 8,000 pounds of mercury [4] and, every year the chlor-alkali industry reports unaccounted-for mercury losses to the EPA [5]. Mercury is a danger to unborn children whose developing brains can be damaged if they are exposed to low dose microgram exposures in the womb [6]. Since mercury is a potent neurological toxin, these unaccounted for mercury losses from the chlor-alkali industry are of concern as they could be a source of exposure for humans, wildlife, and the environment. An Environmental Health Officer (EHO) at the Food and Drug Administration (FDA) investigated

to find the missing mercury in the chlor-alkali industry [7].

The path of the investigation

An employee of the Environmental Protection Agency (EPA) suggested that the EHO contact the Wisconsin Department of Natural Resources (DNR) for information on Vulcan Chemicals’ mercury balance sheet. Vulcan Chemical was the only chemical company to find its missing mercury. Upon request, the Wisconsin DNR provided the EHO with Vulcan Chemical’s annual mercury balance sheet that reported their mercury losses in their products for the year that the mercury balance was done. Vulcan Chemical submitted this mercury balance sheet to the Wisconsin DNR in 2003 with their wastewater discharge permit re-issuance application. This information led to the realization that mercury residue may be found in all products produced by the mercury cell chlor-alkali industry. A representative of the Chlorine Institute confirmed in a telephone interview that the amount of mercury residue in mercury cell chlor-alkali products varies, depending on the manufacturing process at each plant. It is found in mercury grade caustic soda according to product specification sheets [8].

According to an archived web page report initially produced by Vulcan Chemicals, mercury grade caustic soda and hydrochloric acid are primarily used by the high fructose corn syrup industry [9]. Following this lead, the EHO conducted an interview with an “organic” producer of high fructose corn syrup (HFCS) in 2004 and was told that the HFCS industry uses both mercury grade caustic soda and membrane grade caustic soda in their manufacturing process to enhance product shelf life. A review of the literature revealed that HFCS is indeed used as a sweetener by food manufacturers to stabilize food products and enhance product shelf life [10]. HFCS is the end product from a corn wet-milling process that involves a number of steps in a product line that yields corn oil, animal feed, starch products, and corn sweeteners. Several chemicals are required to make HFCS, including caustic soda, hydrochloric acid, alpha-amylase, glucoamylase, isomerase, filter aid, powdered carbon, calcium chloride, and magnesium sulfate [11]. The caustic soda and hydrochloric acid are used throughout the milling process to adjust the pH of the product line. The product line starts with corn and the cornstarch molecule is then converted to different products by various methods that involve acids, bases, sodium hypochlorite and enzymes [12]. Should mercury grade caustic soda, hydrochloric acid, or sodium hypochlorite (derived from mercury grade chlor-alkali chemicals) be used in the milling process, it seemed plausible to the EHO that mercury may well end up in the final product – HFCS. A limited screening of HFCS samples for mercury was initiated by the EHO and researchers at NIST found low levels of total mercury. [13].

To determine the extent of total mercury in HFCS products, the EHO then used additional government resources to collect HFCS samples from different manufacturers and collaborate with individuals outside of the federal government to analyze the samples for total mercury content. It should be noted that these activities occurred before the EHO retired in January 2008.

HFCS sample collection and analytical method

The EHO working under the Office of the FDA Commissioner instructed an investigator in a FDA regional office to collect HFCS samples from different manufacturers. During the week of February 17–24, 2005, the FDA field investigator successfully conducted three separate sampling events, one at each manufacturer. Prior to each sampling event, the FDA field investigator soaked the 20-milliliter (mL) sample vials overnight in a 50 percent (%) nitric acid solution and then rinsed them with distilled water before allowing them to air dry. Per directed assignment from the FDA researcher, the FDA field investigator collected five samples of 42% HFCS and five samples of 55% HFCS from Manufacturer A, five samples of 42% HFCS from Manufacturer B, and five samples of 55% HFCS from Manufacturer C. Each 20 mL sample vial contained approximately 10 mL of HFCS at the end of each of the sampling events. Each sample vial was appropriately labeled with the manufacturers name, % HFCS, date, and the initials of the field investigator. All samples were kept under lock and key prior to being shipped via FEDEX overnight to a laboratory for analyses.

Researchers at the University of Wisconsin-Platteville received the samples from a federal employee with chain-of-custody intact and sub-sampled them for total mercury analysis using NIST Oyster Tissue 1566 b as the standard reference material. The NIST Certificate of Analysis for the Oyster Tissue 1566 b stated that as a standard, it could validate the accuracy of the methods and instruments used to analyze twenty-two different elements including total mercury. All samples, blanks (water and acid matrix), and NIST standard reference material Oyster Tissue 1566 b were analyzed by the following method using Optima Grade Fisher Scientific hydrochloric and nitric acids that were certified to contain less than 0.0001 microgram (μg) mercury per gram (g) reagent. Approximately 1.0 g (to nearest 0.1 milligram) of a HFCS sample, blank, or reference material was accurately weighed into a clean 50 mL XP1500 Plus microwave cell. Approximately 5 mL of nitric acid (Optima Grade Fisher Scientific) was added to the cell. The cell was sealed, and the contents were digested in a high-pressure microwave oven (CEM Mars 5). The resulting solution was allowed to cool before gravimetrically diluting the sample to 50.0 grams (to nearest 0.1 milligram) with 2 Molar (M) hydrochloric acid (Optima Grade Fisher Scientific; 18 MÙ-cm water). Each sample was analyzed within three hours to minimize mercury loss.

A Leeman Labs Hydra AA cold vapor atomic absorption spectrometer (CVAAS) was used for the total mercury analysis. A calibration curve ranging from 10 to 200 picograms mercury/g was constructed using gravimetric dilutions (2 M hydrochloric acid described above) of a primary standard mercury solution (GFS Chemicals). Samples, blanks, and reference materials were introduced along with stannous chloride (GFS Chemicals) reductant at a rate of 5 mL/minute. Each sample and reference material were analyzed in triplicate.

Results of analyses

Inter-sample blanks displayed no mercury signal above the method detection limit of 0.005 μg mercury/g sample. Mercury recovery of spiked reference materials (GFS Chemicals) averaged 98.8 ± 0.3 %. The results from the total mercury analysis of NIST reference material Oyster Tissue 1566 b (0.036 ± 0.006 μg/g mercury) exhibited good agreement with certified values (0.037 ± 0.001 μg/g mercury). The NIST Oyster Tissue 1566 b analyses were performed prior to samples, between samples, and post-samples with no significant difference (p < 0.05) in the total mercury content between these analyses.

Mercury was detected in nine of the twenty samples analyzed (Table 1). Of ten samples from manufacturer “A”, nine were below the 0.005 μg mercury/g sample detection limit with the sole exception being a sample that was 0.012 μg mercury/g HFCS. Of the remaining ten samples from two other manufacturers, two were below the detection limit and the mercury content of the other eight samples ranged from 0.065 μg to 0.570 μg mercury/g HFCS (Table 1).

Table 1. total mercury (Hg) in high fructose corn syrup (HFCS) samples

Implications

Mercury was not detected in eleven out of twenty HFCS samples analyzed (detection limit 0.005 μg mercury/g). A single manufacturer produced nine of these eleven samples. These samples were likely manufactured using caustic soda produced by a membrane chlor-alkali plant which does not use mercury in its manufacturing process. Eight of the nine HFCS samples exhibiting mercury levels between 0.065 μg to 0.570 μg mercury/g HFCS were produced by the other two manufacturers. This could indicate the use of mercury grade caustic soda or hydrochloric acid in the manufacturing processes used by these two manufacturers. Such use would account for the mercury in these HFCS products. With key aspects of the HFCS manufacturing process considered proprietary information, we could not confirm the composition of the raw materials used by the individual HFCS manufacturers and the subsequent source of the mercury. While more sophisticated methods produce lower detection limits, the CVAAS method used in these analyses was sufficient as it clearly and reliably demonstrated significant levels of mercury in 45% of the HFCS samples analyzed. Clearly the sample size of this preliminary trial is too small but there was no support to collect additional samples for analyses. When university researchers outside of the government attempted to obtain additional HFCS samples direct from the manufacturer they were unable to get them. However, with 45% of the HFCS samples containing mercury in this small study, it would be prudent and perhaps essential for public health that additional research be conducted by the FDA or some other public health agency to determine if products containing HFCS also contain mercury. In 2004, several member states of the European Union reported finding mercury concentrations in beverages, cereals and bakery ware, and sweeteners [14] – all of which may contain HFCS. FDA does not currently have a mercury surveillance program for food ingredients such as added sugars or preservatives manufactured with mercury grade chlor-alkali products.

The FDA does analyze some foods for mercury through the ongoing surveillance program known as the Total Diet Study (TDS). The TDS, however, does not test all foods for mercury. Mercury is routinely detected by the TDS in fish, liver, and poultry because farmers routinely use fishmeal and/or fish oil as feed for certain livestock to include chickens, swine, dairy cows, and farmed fish. Animals that are fed fishmeal can bioconcentrate monomethyl mercury in protein matrices that are then passed on to the consumer in the fat components of derived foods [15]. A list of the foods that were recently tested for total mercury along with the results of the analyses may be found at the FDA website [16]. In 2003, FDA tested 48 foods for mercury during the TDS and of those only three may have contained HFCS. Average daily US consumption of HFCS for the year 2007 was approximately 49.8 g per person according to the US Department of Agriculture website [17]. High-end consumers of beverages sweetened with HFCS could easily be ingesting more HFCS than the average person. Results of a recent study of dietary fructose consumption among US children and adults indicate that fructose consumption by Americans represents ten percent (10%) of calories consumed in a 24-hour period [18]. Seventy four percent (74%) of this fructose came from foods and beverages other than fruits and vegetables.

With respect to product labeling, FDA requires food manufacturers to list on the food product label ingredients in descending order of weight from most to least [19]. For example, HFCS is commonly listed as the first ingredient in chocolate syrup on the product label, therefore all that can be known is that of all the ingredients in chocolate syrup, there is more HFCS in the product than any other ingredient. Product labels listing HFCS as a first or second ingredient may contain detectable levels of mercury if the HFCS was manufactured with mercury grade chlor-alkali chemicals. As part of the review process for this article, the authors contacted manufacturers for more information on the % concentration of HFCS in their products and the common response back from manufacturers was that this information is proprietary. With the reported average daily consumption of 49.8 g HFCS per person, however, and our finding of mercury in the range of 0.00 to 0.570 μg mercury/g HFCS, we can estimate that the potential average daily total mercury exposure from HFCS could range from zero to 28.4 μg mercury. This range can be compared to the range of total mercury exposure from dental amalgam in children reported by Health Canada [20]. In the report issued by Canada, daily estimates of total mercury exposure from dental amalgam in children ages 3–19 ranged on average from 0.79 to 1.91 μg mercury. Canada and other countries do not recommend the use of mercury amalgam in pregnant women or children.

Current international food processing standards allow 1.0 μg mercury/g caustic soda [21,22] and there is no standard for mercury in food grade hydrochloric acid. Both of these chemicals may be used to make HFCS. The FDA has approved HFCS for use as an added sugar in food products, but a review of food product labels reveals that it is often added to a product in addition to sugar presumably to enhance product shelf life. Regardless of its intended use, it is imperative that public health officials evaluate this potential source of mercury exposure, as HFCS is presently ubiquitous in processed foods and therefore significantly consumed by people all over the world.

Mercury in any form – either as water-soluble inorganic salt, a lipid-soluble organic mercury compound, or as metallic mercury- is an extremely potent neurological toxin [23]. Organic mercury compounds such as methylmercury that are fat-soluble and readily cross the blood brain barrier are especially damaging to developing nervous tissues [24,25]. For example, prenatal exposure as low as 10 mg/kg methylmercury, as measured in maternal hair growing during pregnancy, may adversely affect the development of the fetal brain [25,26]. Confounding associations and concerns with various stages of brain development related to cumulative early life exposure to mercury include the following sources of mercury: maternal fish consumption during pregnancy, the thimerosal (sodium ethylmercurithiosalicylate, approximately 49% mercury weight) content of certain vaccines and dental amalgam [27].

Mercury regulation varies from country to country. While the US government only regulates methylmercury in fish, several other governments regulate all forms of mercury in all foodstuffs. In the US, the current action level of 1 μg methylmercury/g fish or seafood was set in 1977 during court proceedings of the United States of American v. Anderson Seafoods, Inc. [28]. The data used to determine the action level in fish came from a poisoning incident that occurred in Iraq under Saddam Hussein’s regime in 1971–1972. There was not a chain of custody for the specimens taken from the victims of that poisoning that were tested by World Health Organization or American researchers, and an appropriate epidemiological study was not undertaken [29]. Further risk assessment for methylmercury has been conducted using human data from the massive episodes of mercury poisoning in the tragic Minamata Bay incident in Japan, as well as from large scale epidemiological studies concerning childhood neurodevelopment and neurotoxicity in relation to fetal exposure in various fish eating communities around the world [24,25]. There has never been a blinded, placebo, controlled study published giving humans mercury or methylmercury, nor would this kind of study be ethically considerable. Quantitative information on long-term effects of inorganic mercury compounds on humans does not exist [30]. Inorganic mercury compounds react with DNA and are clastogenic [30]. Because the mechanisms of these reactions remain unknown, it is currently impossible to establish a no adverse-effect-level for mercury in humans. Sensitive populations such as neonates lacking the ability to efficiently excrete mercury or individuals that retain mercury in their body due to impairments in detoxification pathways may not be protected by any exposure limit. The implications for mercury in ingested HFCS are not known and clearly more epidemiological and neurotoxicological studies are required.

Conclusion

An EHO at the FDA conducted an investigation of the chlor-alkali industry in 2004 and found mercury residue in all of the mercury cell chlor-alkali products including caustic soda, chlorine, potassium hydroxide, and hydrochloric acid. Mercury is widely accepted to be a neurotoxic heavy metal [23]. The American Academy of Pediatrics has recommended that minimizing any form of mercury exposure is essential for optimal child health and nervous system development [6]. Current international food processing standards allow 1.0 μg mercury/g caustic soda [21,22] and there is no standard for mercury in food grade hydrochloric acid. Both of these chemicals may be used to make HFCS. Mercury contamination of food products as a result of the use of mercury contaminated HFCS seems like a very real possibility. With daily per capita consumption of HFCS in the US averaging about 50 grams and daily mercury intakes from HFCS ranging up to 28 μg, this potential source of mercury may exceed other major sources of mercury especially in high-end consumers of beverages sweetened with HFCS. Food products that contain a significant amount of HFCS should be tested for mercury contamination in the end product and the public should be informed of any detections. Clearly, more research is needed to determine the extent of mercury exposure in children from mercury contaminated HFCS in food products.

Dr. Howard Peiper

Dr. Howard Peiper, N.D., nominated for a Pulitzer Prize, has written many best-selling books on nutrition and natural health including, “Zeolite, Nature’s Heavy Metal Detoxifier” and Viral Immunity with Humic Acid”.

Zeolite is the Super Detoxifier

Toxic chemicals, including poisonous heavy metals like mercury, lead, arsenic, and cadmium, are the worst problem faced by all life as we know it. We literally live in a chemical soup. The chemicals come into our bodies through the food we eat, the water we drink, and the very air we breathe. This situation actually threatens our survival.
Until recently, the only sure way to remove the most destructive heavy metals and toxins from our bodies was through I.V. chelation, a process both invasive and horrendously expensive. And even if we spent hundreds of hours and thousands of dollars on chelation treatments, the toxins would start going right back in with our next breath, our next meal, our next beverage.
But the solution is at hand. It’s a miracle mineral called zeolite, and it is perhaps one of the most important substances on Earth today.

What is Zeolite?

Zeolite is part of a group of minerals with a four-sided honeycomb structure and, rare among minerals, a negative magnetic charge. The effect of the structure and the magnetic charge is that zeolites attract heavy metals and toxins to it and simply engulfs them. The toxins “check in” and they can’t “check out.” Then the zeolite carries them safely and harmlessly out of the body through normal digestion.
Because of its effect on toxins, zeolite has been used as a supplement in China for more than 900 years. In the West, it has been used by industry for various tasks, including clearing up water pollution and as a food additive for animals.
The form of zeolite I recommend (there are many naturally occurring zeolites) is called ‘clinoptilolite,’ and it is this type of zeolite (in a powder form) that has been studied for its effect in human nutrition.

Medical Uses of Zeolite

Studies by experts in the field of heavy metal detoxing have shown that zeolite has a high affinity for trapping lead, cadmium, arsenic, mercury, and other potentially harmful heavy metals. Through the process of cation exchange, zeolite can lower overall heavy metal exposure in individuals. This would have a dramatic effect in the risk reduction of certain cancers and heart disease.
Zeolite buffers the system towards slight alkalinity by establishing pH levels of 7.35 to 7.45 which is the optimum pH for the body. The body’s pH level influences both immunity and brain function. An acid blood pH (7.34 or lower) creates a precondition for cancer. In an acid environment, brain cell function can also be impaired, causing depression, anxiety, stupor, paranoia, delusions, or hallucinations.
Zeolite is a unique antioxidant. A traditional antioxidant works by absorbing excess free radicals into its system because it has an impaired electron. In contrast, zeolite traps free radicals in its complex structure, inactivating and eliminating them.

Other benefits from taking zeolite are:

* Stops acute and chronic diarrhea
* Raises the body’s antioxidant levels
* Binds mycotoxins, forming stable complexes
* Reduces side effects of chemotherapy/radiation
* Stabilizes and regulates immune system

Humic Acid is the Anti-Viral Answer

Viruses. Those enigmatic, perplexing, and often lethal microbes cause a vast number of human illnesses from the common cold to epidemic diseases. New and changing viruses are appearing at an all too alarming rate and we need an effective way to control their influence on our body.
Referred to as the “missing link” to optimum health and nutrition by leading scientists throughout the world, humic acid is a health miracle. Medical studies now show that it has the ability to significantly change our life for the better. It is so safe, powerful, and effective that healers around the world have used it for hundreds of years with amazing results.
In agriculture, there are many studies that point to a pattern of serious deficiency of humic acid to commercial livestock. When the deficiency is alleviated, phenomenal results are achieved, including resistance to disease, increased growth, and improved general health.
Similarly, human dietary supplementation with humic acid is bringing about life changing results for so many!

So, what exactly is this miraculous substance?

Scientists have most appropriately referred it to as the Anti-Viral Answer. Humic acid is the smallest, most complex, most highly refined naturally occurring water-soluble substance on Earth. Tiny amounts remarkably transform the molecular structure of water, making it intensely more active and penetrating. Humic acid then assists water in its job of dissolving and transporting. It helps carry nutrients into the cell and waste products away from the cell, while also helping to neutralize toxins and invaders.
Humic acid has the dramatic ability to even penetrate deadly ultra-microscopic viruses. Viruses are super small, and live deep inside the cells of plants, animals, and humans. Viruses even live inside other microscopic disease-causing organisms, where they “hitch-a-ride.” Viruses encapsulate themselves within an impenetrable protein barrier where defense mechanisms cannot get them. Humic acid puts a coating around the viruses, so the viruses are not able to adhere to a healthy cell, therefore preventing the viruses from reproducing. The agents for this are called Viral Fusion Inhibitors (through a special proprietary process, humic acid is specially treated and sterilized. Humic acid with Viral Fusion Inhibitors is the only kind I recommend.) The viruses are then vulnerable to attack by the immune system. Yet this is only the beginning, humic acid also has the amazing ability to alert the immune system to the virus or disease invader and to regulate and give strength to the immune system.